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Abstract

The complex vectorial formalism on a general space—time (M, g) was constructed by Cahen,
Debever and Defrise. This formalism is based on the local isomorphism I : £(4) — SO3(C),
where £(4) is the four-dimensional Lorentz group acting on the tangent spaces 7, M and SO3(C)
is the three-dimensional complex rotation group. In this framework, the congruence of Debever
plays a distinguished role. Its properties determine the general space—time M, in terms of Petrov’s
classification.

In the present paper, we assume that any hyperbolic vector field X on M is a skew symmetric
Killing vector field having a spatial vector field Y as generative. The existence of such a vector
field X is determined by an exterior differential system in involution. It is shown that M is the
local Riemannian product M = My x Mg, where My (resp. M;) is a totally geodesic and totally
pseudo-isotropic hyperbolic (resp. spatial) surface (the Gauss map is ametric). Any such M is a
space—time of type D in Petrov’s classification.

It is proved that the congruence of Debever is of electric type; in particular, it is geodesic and
shear 1-free. Other geometric properties on such a general space—time are obtained. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Preliminaries

Let (M, g) be a general space—time with metric tensor g. In the following, we shall
make use of the complex vectorial formalism (CVF) constructed by Cahen et al. [1].
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This formalism is based on the local isomorphism / : £(4) — SO3(C), where L(4) is
the four-dimensional Lorentz group acting on the tangent spaces 7, M of an orientable
space—time (M, g) and SO3(C) is the three-dimensional complex rotation group.

Let S = {h4: A € {1,2,3,4}} be a Sachs (or a null) frame over M and {6} its dual
coframe. The vector fields i 4 of S satisfy

glhy,hy) =1, glhy, h3) = —1

and all the other products are O (h1, h4 are real null vectors, whilst h;, h3 are complex
conjugates).

The six-dimensional space £* A (2) of 2-forms #4 A 08 is isomorphic to the space
spanned by the 2-forms Z% (& = 1, 2, 3), which together with their complex conjugate Z*
form a basis of the complex space C3. This isomorphism is defined by

Z' =0° Ao, Z2=0' A 67, Z3=10" A0 02 107 (1.1)
and their corresponding complex conjugate
7' =02 Ao, 72 =0" £ 63, Z3 =L@ Aot + 02 A 07). (1.2)

With these 2-forms, the connection forms a)g corresponding to {h 4} may be expressed by

the spinorial coefficients o, of Newmann and Penrose (NP), defined by
wapd NOB = 0,7% + 5,77
In the coframe {64}, these coefficients may be written as
0w = 0aA0”%, 5o =Gl (1.3)

where A € {1,2,3,4},« € {1, 2, 3}, and in the same way, the curvature 2-forms X, are
defined by

Q2404 N0 = 3,72 + £,7°.
In terms of o, 6, the covariant derivatives of /1 4 are expressed by

Vhi=—1(63+03) ®h1 + 562 ® hy + 302 ® h3,

Vhy = =161 ® hy + (63 — 03) ® ha + 302 @ ha,

Vhy = =301 @ hi — 3(53 — 03) ® h3 + 552 ® ha,

Vhy = =301 ® hy — 561 @ hy + 4 (03 +53) ® ha (14)
(V is torsion-less), and the first group of structure equations is given by Israel [4],

d0' = —1@G3 +03) A0 + 151 A 0P+ Loy A6,

40> =~ A0 + 103 — G3) A 02+ Loy A 6%,

d0° = 1oy A0 + 13— 03) A0 + 150 A 6%,

d0* = —So A 07 = 15, A0 — (o3 + 53) A O (1.5)
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In consequence of the above, Cartan’s first structure equations in C3 take the form
dz' =losnz' — o A Z°,
dz* =losnZ* + oy A 27,
dz* =Ltoynz2' — Loy n 22 (1.6)

and similarly for Z%. The basis {Z%, Z%} is the 2-form basis in the complex space C>.
On the other hand, Cartan’s structure equations involving the curvature forms X, follow
immediately from (1.6):

d01=21+%03/\01, d02=22+%02/\03, dU3=E3+%02/\01. 1.7

Finally, with respect to the basis { Z%, VA } of C3, the curvature 2-forms X, may be expressed
as

So = (Cap — 3K yup)ZP + E 52" (1.8)

Here the coefficients Cop and E, 5 denote the components of Weyl’s conformal tensor field
and the components of the electric tensor field E, respectively [4]. In addition, K and yug
are the scalar curvature of (M, g) and the matrix

01 O
1 0 0 ]. (1.9)
00 -2

We also recall thatb : TM — T*M, § : T*M — TM mean the musical isomorphisms
defined by g. If £2 is an almost symplectic form, then

Y T™M — T*M, Z> —iz2="72,

denotes the symplectic isomorphism.

2. Hyperbolic skew symmetric Killing vector fields

If (M, g) is a general space—time, then in terms of a Sachs frame {h,4}, the soldering
form dp (or the canonical vector-valued 1-form) is expressed by

dp=0*®hs=g=20'®6"—0>®67. 2.1
In these conditions, a hyperbolic vector field X on M may be written as
X=X"n+ X%, X', X*ecC®M. (2.2)

In the present paper, we assume that any X is a skew symmetric Killing (SSK) vector field
having a spatial vector field Y =Y 2hy + Y3h3 as generative [8], i.e.

VX=XAY=Y"®@X-X"®Y (2.3)

(A: wedge product of vector fields). Taking the covariant differential of X, one finds
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by (1.4) and (2.2)

VX=(dX"'— X" (03+53) ® hy + AX* + 1X* (03 +53) @ hy
—3(X'5 — X*01) @ ha + 3 (X2 — X*G1) ® 3 2.4)

and remembering that 6! and 6* are the dual forms of 4 and h, respectively, one may
write by (2.3)

VX =Y’ @ (X'hy + X*ha) — (X'6* + X*0") ® (Y?hy + Vh3), 2.5)
where
Y’ = —v3% —y%? (2.6)

is the dual form of Y. By (2.4) and (2.5), a standard calculation gives

dx' — I1x' (o3 +63) = X'Y", dx* + 1x*(03 + 63) = X*Y”,

X'6y — X%o = —2Y% X", X'oy — X% = —273x° (2.7)
and by the first two equations of (2.7) it follows at once that

, _dIXx|*  dE
Ix|12 ~ E’

(2.8)
where %HX |2 = E is the energy function corresponding to X. Hence one may affirm that
the dual form of the generative Y is exact (or Y is a gradient vector field). Next, since

X" = x'o* + x*!, (2.9)
one derives by (1.5), (2.6) and (2.7)

dx’ =2v" A X° (2.10)

and so one refinds Rosca’s lemma regarding SSK vector fields [8]. One has to notice that
in the case under discussion, the recurrence form 2Y" is exact. On the other hand, since by
hypothesis the last two equations of (2.7) hold good for any hyperbolic vector field, one
gets at once

o1 =2Y%0', & =2v%", o = =2Y30%, &y = —2Y%0*. (2.11)

The above equations reveal some significant properties. First of all, performing the covariant
differential of the generative vector field

Y =Y?hy +Yh3 (2.12)
and taking account that Y is a gradient vector field, one may take

dY? + 363 —on)Y? = —Y?Y0%,  dY’ — 163 —03)Y’ = —Y?Y0> (213
and one derives on behalf of (2.1),

VY =-Y*y3dp = 1|y |* dp. (2.14)
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Consequently, one may affirm that the generative vector field ¥ of the SSK vector field
X is a concurrent vector field [11] having, up to %, its length as conformal scalar (as is
well-known, any concurrent vector field is a gradient). On the other hand, the six 1-forms
0y, 04 associated to the CVF may be expressed as

Ow = 0qal?, Gy = Gaaf? (2.15)

(the “bar” denoting the complex conjugate, i.e. 92 = 63, 0! = 0!,0% = §4), where the
coefficients oy 4, 044 correspond to the 12 spinorial coefficients of NP [4]. From (2.11) one
gets at once

o13 =0, o14 =0, 021 =0, 02 =0, (2.16)

which in terms of CVF characterize a space—time of type D in Petrov’s classification. Since
|Y]?> = —2Y2Y3, one derives by (2.6), (2.8) and (2.13)
divi? _, _ dix|?
1y X 11>

(i.e. the energy functions of X and Y are homothetic).
In another order of ideas, setting

= [|X|> =c|Y|?, ¢ = constant (2.17)

2f = —2v%y% = Y|, (2.18)
one has by (2.19)

V== VP =-2f (2.19)
and since one finds

divY = 2f2, (2.20)

one derives
div(Vf) = —2f3. (2.21)

Hence, since the function f : R* — R has the property that both ||V f % and div (V f) are
functions of f, it follows that f is an isoparametric function (i.e. the energy functions of
X and Y are isoparametric functions). On the other hand, by (2.5) and (2.14), one derives
by a standard calculation

[X,Y]=|Y|*X.

Hence, by a known definition, the vector field X admits an infinitesimal conformal trans-
formation of generator Y. Further, operating on (2.3) by the exterior covariant derivative
operator dV, one obtains by (2.3), (2.10) and (2.14)

dV(VX)=V2X = |[YIIPX" Adp+ (X° AY) QY. (2.22)

This affirms that X is a quasi-exterior concurrent vector field with respect to Y [8] (see also
[6]). Next, if R denotes the curvature tensor field, then by the general formula

R(Z,ZW = V*W(Z, Z)), (2.23)
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one infers
RX, V)X = My i*ix®. (2.24)
In another order of ideas, let
on = 0" A 6%, (2.25)
@ =0> N6 (2.26)

be the simple unit forms corresponding to the hyperbolic distribution Dy = {h1, h4} and
the spatial distribution Dg = {h;, h3}. By the structure equations of (1.5) and with the help
of (2.11), one gets

dgn = 2Y" A g, 2.27)

des = 0. (2.28)
Hence, if Zg € D, Zy, € Dy, one derives from (2.27) and (2.28)

Lz.0n = Y (Zs)gn, Lz,9s =0,

which, following a known definition, shows that ¢y, is a conformal integral invariant of Dy
and ¢y is an integral invariant of Dy,.

Therefore, by Frobenius’ theorem, one may affirm that the manifold M under consider-
ation is foliated by surfaces M and My, tangent to D and Dy, respectively. One also finds
that on My, (resp. M;), one has

(Vha, Vhs) =0, (Vh3, Vh3) =0, (Vhi,Vh1) =0, (Vha, Vhs) =0

and consequently, by referring to [7], one may say that My, and M; are totally pseudo-isotropic
surfaces of M. Moreover, the spatial surface Mj is totally geodesic, i.e.

(dps, Vhi) =0, (dps, Vhg) =0,
where d ps is the soldering form of the surface M.

Summarizing, we state the following.

Theorem 1. Let M be a general space—time carrying a totally hyperbolic SSK vector field
X and let Y be its spatial generative. Then any such manifold M is the local Riemannian
product

M = My, x M,

where My, is a hyperbolic surface and Mg a spatial surface, which are such that the immer-
sions

Xh i My —> M, Xs: Mg —> M

are totally pseudo-isotropic and x5 : Mg — M is totally geodesic.
In addition

1. any such M is a space—time of type D in Petrov’s classification;
2. the square | X ||* and |Y ||* of X and Y are isoparametric functions;
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3. Y defines an infinitesimal conformal transformation of X;
4. X is a quasi-exterior concurrent vector field,
5. the curvature tensor field R satisfies

RX, V)X = LIy I*1x)%.

3. Second order properties

In this section, some second order properties are discussed and the congruence of Debever
I’ (hy) is studied. Regarding the second order properties involving the forms Z% which
defines the complex C3-basis, a series of properties also appear. In terms of CVF, the
transcription of the second of Cartan’s structure equations (see (1.7)) regarding the curvature
forms X, are

doy 221+%G3/\O’1, d02222+%0’2/\0’3, d(73=23+%0'2/\(71. 3.1

Hence, in the case under discussion, one infers by a standard calculation by (1.5), (2.11)
and (2.13)

doy = Y2 (o3 — 2Y302 +2Y") A 61, doy = Y3 (o3 +2Y260% —2Y") A 6%,

do3 = —4|Y|?0> A 63 (3.2)
and consequently Eq. (3.1) moves to

X = 2Y2(Y302 —Y) Ao, ¥, =2Y3(Y%0% — Y") A 6%,

T3 =0>A0° -0 Ao*. (3.3)
In terms of the basis {Z%, Z%} of C3, one may write (see also [4])

Z' =030t ZP=0"n0% ZP=10"A0* -0 A0,

Z'=02n0t, ZP=0'n0%, ZP=10'"A0*+07 A0 (3.4)
and Eq. (3.3) turns out to

D ==20YIPZE +2YH 2 D= 20 Y )Pzt + 20?2,

3y =-275. (3.5)

We recall that the null vector field &4, which is called Debever’s vector field [4], plays a
distinguished role in the frame of the CVF. Since by (2.11) one has

014 =0, o3=0& 0, AZ>=0, (3.6)

then by [4] the congruence I" (4) is said to be geodesic and shear 1-free. On the other hand,
with respect to the basis {Z%, Z%} of C3, the curvature 2-forms may be expressed by (1.8)
(see [1]). By (3.5) one finds

2= (Cin-1K)Z? + E; 27 (3.7)
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and since one gets
Ci2 =012, (3.3)

then in terms of the CVF, the above equation proves that the congruence of Debever I" (h4)
is of electric type [4]. We mention that we have

0 Cn 0
Cp=]|Ci2 O 0 3.9
0 0 4Cpp

and this agrees with the fact that the manifold under consideration is of type D in the sense
of Petrov [1,4].

Perform now the differentials of the 2-forms { Z¢, zY }, which define the complex C3-basis.
Then, by (1.5), (2.11) and (2.13) and taking account of (2.6), one infers

dz' =131 2", dz?=1o3n 2% dZP=2Y"AZ°,
dz'=1osnZ', dZ?=LosnZ? dZ=2Y"AZ°. (3.10)

Therefore, from the above, one may affirm that the space-time under consideration is
endowed with an exterior recurrent complex basis. Associated with the C3-basis, one may
consider the almost symplectic forms

Qi=M2Z3+ 2+ Ci(Z3 = 7Y, (3.11)

Ai € C®M, C; = constant,i = 1,2. By (1.6), (2.11) and (2.13), one finds that the
necessary and sufficient condition in order that the pairing §2; be symplectic forms, i.e.
d$2; = 0, is expressed by the conditions

dxr; + 22, Y° = 0. (3.12)

Next, by referring to [3], we agree to say that (£21, £2,) defines a nearly symplectic couple
if £21 A §£2o = 0. Hence, the scalars A; and the constants C; are related by

M Cr~+ ACp =0. (3.13)
In consequence of (2.8), one may write

, _ dIx)?
1112

and since Y = Y202 — Y363 defines the symplectic isomorphism to Y, one derives by (1.6)
and (2.13)

&Y = Ly2; =0.

This affirms that the symplectic forms §2; are invariant by the generative vector field Y
of X.
Thus, we may state the following.
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Theorem 2. Any space—time (M, g) which carries a total hyperbolic SSK vector field X
having a spatial vector field Y as generative is structured by an exterior recurrent complex
C3-basis.

The congruence of Debever I' (ha) associated with M is of electric type.

Further, let 2; (i = 1,2) be the almost symplectic forms associated with the C3-basis
and let \; be the scalars associated with $2;.

Then the necessary and sufficient condition in order that §2; be symplectic is that \; be
conformal to || X ||, and in this case §2; are invariant by the generative Y and they define a
nearly symplectic couple in the sense of [3].

For further reading see [2,5,9,10].
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