On space-time carrying a total hyperbolic skew symmetric Killing vector field

I. Mihai ${ }^{\mathrm{a}, *}$, R. Rosca ${ }^{\mathrm{b}}$, L. Verstraelen ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Mathématiques, 14 Rue Academiei, 70109 Bucharest, Romania
b 59 Av. Emile Zola, 75015 Paris, France
${ }^{\text {c }}$ Departement Wiskunde, Katholieke Univ. Leuven, B-3001 Leuven, Belgium

Received 10 January 2000; received in revised form 27 June 2000

Abstract

The complex vectorial formalism on a general space-time (M, g) was constructed by Cahen, Debever and Defrise. This formalism is based on the local isomorphism $I: \mathcal{L}(4) \rightarrow S O^{3}(\mathbb{C})$, where $\mathcal{L}(4)$ is the four-dimensional Lorentz group acting on the tangent spaces $T_{\mathrm{p}} M$ and $S O^{3}(\mathbb{C})$ is the three-dimensional complex rotation group. In this framework, the congruence of Debever plays a distinguished role. Its properties determine the general space-time M, in terms of Petrov's classification.

In the present paper, we assume that any hyperbolic vector field X on M is a skew symmetric Killing vector field having a spatial vector field Y as generative. The existence of such a vector field X is determined by an exterior differential system in involution. It is shown that M is the local Riemannian product $M=M_{\mathrm{h}} \times M_{\mathrm{s}}$, where M_{h} (resp. M_{s}) is a totally geodesic and totally pseudo-isotropic hyperbolic (resp. spatial) surface (the Gauss map is ametric). Any such M is a space-time of type D in Petrov's classification.

It is proved that the congruence of Debever is of electric type; in particular, it is geodesic and shear 1 -free. Other geometric properties on such a general space-time are obtained. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 53C50; 53C28; 53Z05
Subj. Class.: General relativity; Differential geometry
Keywords: Space-time; Killing vector field

1. Preliminaries

Let (M, g) be a general space-time with metric tensor g. In the following, we shall make use of the complex vectorial formalism (CVF) constructed by Cahen et al. [1].

[^0]This formalism is based on the local isomorphism $I: \mathcal{L}(4) \rightarrow S O^{3}(\mathbb{C})$, where $\mathcal{L}(4)$ is the four-dimensional Lorentz group acting on the tangent spaces $T_{\mathrm{p}} M$ of an orientable space-time (M, g) and $S O^{3}(\mathbb{C})$ is the three-dimensional complex rotation group.

Let $S=\left\{h_{A} ; A \in\{1,2,3,4\}\right\}$ be a Sachs (or a null) frame over M and $\left\{\theta^{A}\right\}$ its dual coframe. The vector fields h_{A} of S satisfy

$$
g\left(h_{1}, h_{4}\right)=1, \quad g\left(h_{2}, h_{3}\right)=-1
$$

and all the other products are $0\left(h_{1}, h_{4}\right.$ are real null vectors, whilst h_{2}, h_{3} are complex conjugates).
The six-dimensional space $\mathcal{L}^{*} \wedge(2)$ of 2-forms $\theta^{A} \wedge \theta^{B}$ is isomorphic to the space spanned by the 2 -forms $Z^{\alpha}(\alpha=1,2,3)$, which together with their complex conjugate \bar{Z}^{α} form a basis of the complex space \mathbb{C}^{3}. This isomorphism is defined by

$$
\begin{equation*}
Z^{1}=\theta^{3} \wedge \theta^{4}, \quad Z^{2}=\theta^{1} \wedge \theta^{2}, \quad Z^{3}=\frac{1}{2}\left(\theta^{1} \wedge \theta^{4}-\theta^{2} \wedge \theta^{3}\right) \tag{1.1}
\end{equation*}
$$

and their corresponding complex conjugate

$$
\begin{equation*}
\bar{Z}^{1}=\theta^{2} \wedge \theta^{4}, \quad \bar{Z}^{2}=\theta^{1} \wedge \theta^{3}, \quad \bar{Z}^{3}=\frac{1}{2}\left(\theta^{1} \wedge \theta^{4}+\theta^{2} \wedge \theta^{3}\right) \tag{1.2}
\end{equation*}
$$

With these 2 -forms, the connection forms ω_{B}^{A} corresponding to $\left\{h_{A}\right\}$ may be expressed by the spinorial coefficients σ_{α} of Newmann and Penrose (NP), defined by

$$
\omega_{A B} \theta^{A} \wedge \theta^{B}=\sigma_{\alpha} Z^{\alpha}+\bar{\sigma}_{\alpha} \bar{Z}^{\alpha}
$$

In the coframe $\left\{\theta^{A}\right\}$, these coefficients may be written as

$$
\begin{equation*}
\sigma_{\alpha}=\sigma_{\alpha A} \theta^{A}, \quad \bar{\sigma}_{\alpha}=\bar{\sigma}_{\alpha A} \bar{\theta}^{A} \tag{1.3}
\end{equation*}
$$

where $A \in\{1,2,3,4\}, \alpha \in\{1,2,3\}$, and in the same way, the curvature 2-forms Σ_{α} are defined by

$$
\Omega_{A B} \theta^{A} \wedge \theta^{B}=\Sigma_{\alpha} Z^{\alpha}+\bar{\Sigma}_{\alpha} \bar{Z}^{\alpha}
$$

In terms of $\sigma_{\alpha}, \bar{\sigma}_{\alpha}$ the covariant derivatives of h_{A} are expressed by

$$
\begin{align*}
& \nabla h_{1}=-\frac{1}{4}\left(\bar{\sigma}_{3}+\sigma_{3}\right) \otimes h_{1}+\frac{1}{2} \bar{\sigma}_{2} \otimes h_{2}+\frac{1}{2} \sigma_{2} \otimes h_{3}, \\
& \nabla h_{2}=-\frac{1}{2} \bar{\sigma}_{1} \otimes h_{1}+\frac{1}{4}\left(\bar{\sigma}_{3}-\sigma_{3}\right) \otimes h_{2}+\frac{1}{2} \sigma_{2} \otimes h_{4}, \\
& \nabla h_{3}=-\frac{1}{2} \sigma_{1} \otimes h_{1}-\frac{1}{4}\left(\bar{\sigma}_{3}-\sigma_{3}\right) \otimes h_{3}+\frac{1}{2} \bar{\sigma}_{2} \otimes h_{4} \\
& \nabla h_{4}=-\frac{1}{2} \sigma_{1} \otimes h_{2}-\frac{1}{2} \bar{\sigma}_{1} \otimes h_{3}+\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \otimes h_{4} \tag{1.4}
\end{align*}
$$

(∇ is torsion-less), and the first group of structure equations is given by Israel [4],

$$
\begin{align*}
& \mathrm{d} \theta^{1}=-\frac{1}{4}\left(\bar{\sigma}_{3}+\sigma_{3}\right) \wedge \theta^{1}+\frac{1}{2} \bar{\sigma}_{1} \wedge \theta^{2}+\frac{1}{2} \sigma_{1} \wedge \theta^{3} \\
& \mathrm{~d} \theta^{2}=-\frac{1}{2} \bar{\sigma}_{2} \wedge \theta^{1}+\frac{1}{4}\left(\sigma_{3}-\bar{\sigma}_{3}\right) \wedge \theta^{2}+\frac{1}{2} \sigma_{1} \wedge \theta^{4} \\
& \mathrm{~d} \theta^{3}=-\frac{1}{2} \sigma_{2} \wedge \theta^{1}+\frac{1}{4}\left(\bar{\sigma}_{3}-\sigma_{3}\right) \wedge \theta^{3}+\frac{1}{2} \bar{\sigma}_{2} \wedge \theta^{4} \\
& \mathrm{~d} \theta^{4}=-\frac{1}{2} \sigma_{2} \wedge \theta^{2}-\frac{1}{2} \bar{\sigma}_{2} \wedge \theta^{3}-\frac{1}{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right) \wedge \theta^{4} \tag{1.5}
\end{align*}
$$

In consequence of the above, Cartan's first structure equations in \mathbb{C}^{3} take the form

$$
\begin{align*}
& \mathrm{d} Z^{1}=\frac{1}{2} \sigma_{3} \wedge Z^{1}-\sigma_{2} \wedge Z^{3}, \\
& \mathrm{~d} Z^{2}=\frac{1}{2} \sigma_{3} \wedge Z^{2}+\sigma_{1} \wedge Z^{3}, \\
& \mathrm{~d} Z^{3}=\frac{1}{2} \sigma_{1} \wedge Z^{1}-\frac{1}{2} \sigma_{2} \wedge Z^{2} \tag{1.6}
\end{align*}
$$

and similarly for \bar{Z}^{α}. The basis $\left\{Z^{\alpha}, \bar{Z}^{\alpha}\right\}$ is the 2-form basis in the complex space \mathbb{C}^{3}. On the other hand, Cartan's structure equations involving the curvature forms Σ_{α} follow immediately from (1.6):

$$
\begin{equation*}
\mathrm{d} \sigma_{1}=\Sigma_{1}+\frac{1}{2} \sigma_{3} \wedge \sigma_{1}, \quad \mathrm{~d} \sigma_{2}=\Sigma_{2}+\frac{1}{2} \sigma_{2} \wedge \sigma_{3}, \quad \mathrm{~d} \sigma_{3}=\Sigma_{3}+\frac{1}{2} \sigma_{2} \wedge \sigma_{1} \tag{1.7}
\end{equation*}
$$

Finally, with respect to the basis $\left\{Z^{\alpha}, \bar{Z}^{\alpha}\right\}$ of \mathbb{C}^{3}, the curvature 2-forms Σ_{α} may be expressed as

$$
\begin{equation*}
\Sigma_{\alpha}=\left(C_{\alpha \beta}-\frac{1}{2} K \gamma_{\alpha \beta}\right) Z^{\beta}+E_{\alpha \bar{\beta}} \bar{Z}^{\beta} \tag{1.8}
\end{equation*}
$$

Here the coefficients $C_{\alpha \beta}$ and $E_{\alpha \bar{\beta}}$ denote the components of Weyl's conformal tensor field and the components of the electric tensor field E, respectively [4]. In addition, K and $\gamma_{\alpha \beta}$ are the scalar curvature of (M, g) and the matrix

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \tag{1.9}\\
1 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

We also recall that b:TM $\rightarrow T^{*} M, \sharp: T^{*} M \rightarrow T M$ mean the musical isomorphisms defined by g. If Ω is an almost symplectic form, then

$$
\Omega^{b}: T M \rightarrow T^{*} M, \quad Z \mapsto-i_{Z} \Omega={ }^{\mathrm{b}} Z
$$

denotes the symplectic isomorphism.

2. Hyperbolic skew symmetric Killing vector fields

If (M, g) is a general space-time, then in terms of a Sachs frame $\left\{h_{A}\right\}$, the soldering form $\mathrm{d} p$ (or the canonical vector-valued 1-form) is expressed by

$$
\begin{equation*}
\mathrm{d} p=\theta^{A} \otimes h_{A} \Rightarrow g=2\left(\theta^{1} \otimes \theta^{4}-\theta^{2} \otimes \theta^{3}\right) \tag{2.1}
\end{equation*}
$$

In these conditions, a hyperbolic vector field X on M may be written as

$$
\begin{equation*}
X=X^{1} h_{1}+X^{4} h_{4}, \quad X^{1}, X^{4} \in C^{\infty} M . \tag{2.2}
\end{equation*}
$$

In the present paper, we assume that any X is a skew symmetric Killing (SSK) vector field having a spatial vector field $Y=Y^{2} h_{2}+Y^{3} h_{3}$ as generative [8], i.e.

$$
\begin{equation*}
\nabla X=X \wedge Y=Y^{\mathrm{b}} \otimes X-X^{\mathrm{b}} \otimes Y \tag{2.3}
\end{equation*}
$$

(\wedge : wedge product of vector fields). Taking the covariant differential of X, one finds
by (1.4) and (2.2)

$$
\begin{align*}
\nabla X= & \left(\mathrm{d} X^{1}-\frac{1}{4} X^{1}\left(\sigma_{3}+\bar{\sigma}_{3}\right)\right) \otimes h_{1}+\left(\mathrm{d} X^{4}+\frac{1}{4} X^{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right)\right) \otimes h_{4} \\
& -\frac{1}{2}\left(X^{1} \bar{\sigma}_{2}-X^{4} \sigma_{1}\right) \otimes h_{2}+\frac{1}{2}\left(X^{1} \sigma_{2}-X^{4} \bar{\sigma}_{1}\right) \otimes h_{3} \tag{2.4}
\end{align*}
$$

and remembering that θ^{1} and θ^{4} are the dual forms of h_{4} and h_{1}, respectively, one may write by (2.3)

$$
\begin{equation*}
\nabla X=Y^{b} \otimes\left(X^{1} h_{1}+X^{4} h_{4}\right)-\left(X^{1} \theta^{4}+X^{4} \theta^{1}\right) \otimes\left(Y^{2} h_{2}+Y^{3} h_{3}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
Y^{b}=-Y^{3} \theta^{2}-Y^{2} \theta^{3} \tag{2.6}
\end{equation*}
$$

is the dual form of Y. By (2.4) and (2.5), a standard calculation gives

$$
\begin{align*}
& \mathrm{d} X^{1}-\frac{1}{4} X^{1}\left(\sigma_{3}+\bar{\sigma}_{3}\right)=X^{1} Y^{\mathrm{b}}, \quad \mathrm{~d} X^{4}+\frac{1}{4} X^{4}\left(\sigma_{3}+\bar{\sigma}_{3}\right)=X^{4} Y^{\mathrm{b}}, \\
& X^{1} \bar{\sigma}_{2}-X^{4} \sigma_{1}=-2 Y^{2} X^{\mathrm{b}}, \quad X^{1} \sigma_{2}-X^{4} \bar{\sigma}_{1}=-2 Y^{3} X^{\mathrm{b}} \tag{2.7}
\end{align*}
$$

and by the first two equations of (2.7) it follows at once that

$$
\begin{equation*}
Y^{\mathrm{b}}=\frac{\mathrm{d}\|X\|^{2}}{\|X\|^{2}}=\frac{\mathrm{d} E}{E} \tag{2.8}
\end{equation*}
$$

where $\frac{1}{2}\|X\|^{2}=E$ is the energy function corresponding to X. Hence one may affirm that the dual form of the generative Y is exact (or Y is a gradient vector field). Next, since

$$
\begin{equation*}
X^{b}=X^{1} \theta^{4}+X^{4} \theta^{1} \tag{2.9}
\end{equation*}
$$

one derives by (1.5), (2.6) and (2.7)

$$
\begin{equation*}
\mathrm{d} X^{\mathrm{b}}=2 Y^{\mathrm{b}} \wedge X^{\mathrm{b}} \tag{2.10}
\end{equation*}
$$

and so one refinds Rosca's lemma regarding SSK vector fields [8]. One has to notice that in the case under discussion, the recurrence form $2 Y^{\mathrm{b}}$ is exact. On the other hand, since by hypothesis the last two equations of (2.7) hold good for any hyperbolic vector field, one gets at once

$$
\begin{equation*}
\sigma_{1}=2 Y^{2} \theta^{1}, \quad \bar{\sigma}_{1}=2 Y^{3} \theta^{1}, \quad \sigma_{2}=-2 Y^{3} \theta^{4}, \quad \bar{\sigma}_{2}=-2 Y^{2} \theta^{4} \tag{2.11}
\end{equation*}
$$

The above equations reveal some significant properties. First of all, performing the covariant differential of the generative vector field

$$
\begin{equation*}
Y=Y^{2} h_{2}+Y^{3} h_{3} \tag{2.12}
\end{equation*}
$$

and taking account that Y is a gradient vector field, one may take

$$
\begin{equation*}
\mathrm{d} Y^{2}+\frac{1}{4}\left(\bar{\sigma}_{3}-\sigma_{3}\right) Y^{2}=-Y^{2} Y^{3} \theta^{2}, \quad \mathrm{~d} Y^{3}-\frac{1}{4}\left(\bar{\sigma}_{3}-\sigma_{3}\right) Y^{3}=-Y^{2} Y^{3} \theta^{3} \tag{2.13}
\end{equation*}
$$

and one derives on behalf of (2.1),

$$
\begin{equation*}
\nabla Y=-Y^{2} Y^{3} \mathrm{~d} p=\frac{1}{2}\|Y\|^{2} \mathrm{~d} p \tag{2.14}
\end{equation*}
$$

Consequently, one may affirm that the generative vector field Y of the SSK vector field X is a concurrent vector field [11] having, up to $\frac{1}{2}$, its length as conformal scalar (as is well-known, any concurrent vector field is a gradient). On the other hand, the six 1-forms $\sigma_{\alpha}, \bar{\sigma}_{\alpha}$ associated to the CVF may be expressed as

$$
\begin{equation*}
\sigma_{\alpha}=\sigma_{\alpha A} \theta^{A}, \quad \bar{\sigma}_{\alpha}=\bar{\sigma}_{\alpha A} \bar{\theta}^{A} \tag{2.15}
\end{equation*}
$$

(the "bar" denoting the complex conjugate, i.e. $\theta^{2}=\bar{\theta}^{3}, \theta^{1}=\bar{\theta}^{1}, \theta^{4}=\bar{\theta}^{4}$), where the coefficients $\sigma_{\alpha A}, \bar{\sigma}_{\alpha A}$ correspond to the 12 spinorial coefficients of NP [4]. From (2.11) one gets at once

$$
\begin{equation*}
\sigma_{13}=0, \quad \sigma_{14}=0, \quad \sigma_{21}=0, \quad \sigma_{22}=0 \tag{2.16}
\end{equation*}
$$

which in terms of CVF characterize a space-time of type D in Petrov's classification. Since $\|Y\|^{2}=-2 Y^{2} Y^{3}$, one derives by (2.6), (2.8) and (2.13)

$$
\begin{equation*}
\frac{\mathrm{d}\|Y\|^{2}}{\|Y\|^{2}}=Y^{\mathrm{b}}=\frac{\mathrm{d}\|X\|^{2}}{\|X\|^{2}} \Rightarrow\|X\|^{2}=c\|Y\|^{2}, \quad c=\mathrm{constant} \tag{2.17}
\end{equation*}
$$

(i.e. the energy functions of X and Y are homothetic).

In another order of ideas, setting

$$
\begin{equation*}
2 f=-2 Y^{2} Y^{3}=\|Y\|^{2} \tag{2.18}
\end{equation*}
$$

one has by (2.19)

$$
\begin{equation*}
\nabla f=f Y \Rightarrow\|\nabla f\|^{2}=-2 f^{3} \tag{2.19}
\end{equation*}
$$

and since one finds

$$
\begin{equation*}
\operatorname{div} Y=2 f^{2} \tag{2.20}
\end{equation*}
$$

one derives

$$
\begin{equation*}
\operatorname{div}(\nabla f)=-2 f^{3} \tag{2.21}
\end{equation*}
$$

Hence, since the function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}$ has the property that both $\|\nabla f\|^{2}$ and div (∇f) are functions of f, it follows that f is an isoparametric function (i.e. the energy functions of X and Y are isoparametric functions). On the other hand, by (2.5) and (2.14), one derives by a standard calculation

$$
[X, Y]=\|Y\|^{2} X
$$

Hence, by a known definition, the vector field X admits an infinitesimal conformal transformation of generator Y. Further, operating on (2.3) by the exterior covariant derivative operator d^{∇}, one obtains by (2.3), (2.10) and (2.14)

$$
\begin{equation*}
\mathrm{d}^{\nabla}(\nabla X)=\nabla^{2} X=\|Y\|^{2} X^{b} \wedge \mathrm{~d} p+\left(X^{b} \wedge Y^{b}\right) \otimes Y \tag{2.22}
\end{equation*}
$$

This affirms that X is a quasi-exterior concurrent vector field with respect to Y [8] (see also [6]). Next, if R denotes the curvature tensor field, then by the general formula

$$
\begin{equation*}
R\left(Z, Z^{\prime}\right) W=\nabla^{2} W\left(Z, Z^{\prime}\right) \tag{2.23}
\end{equation*}
$$

one infers

$$
\begin{equation*}
R(X, Y) X=\frac{1}{2}\|Y\|^{4}\|X\|^{2} \tag{2.24}
\end{equation*}
$$

In another order of ideas, let

$$
\begin{align*}
\varphi_{\mathrm{h}} & =\theta^{1} \wedge \theta^{4} \tag{2.25}\\
\varphi_{\mathrm{s}} & =\theta^{2} \wedge \theta^{3} \tag{2.26}
\end{align*}
$$

be the simple unit forms corresponding to the hyperbolic distribution $D_{\mathrm{h}}=\left\{h_{1}, h_{4}\right\}$ and the spatial distribution $D_{\mathrm{s}}=\left\{h_{2}, h_{3}\right\}$. By the structure equations of (1.5) and with the help of (2.11), one gets

$$
\begin{align*}
\mathrm{d} \varphi_{\mathrm{h}} & =2 Y^{\mathrm{b}} \wedge \varphi_{\mathrm{h}} \tag{2.27}\\
\mathrm{~d} \varphi_{\mathrm{s}} & =0 \tag{2.28}
\end{align*}
$$

Hence, if $Z_{\mathrm{s}} \in D_{\mathrm{s}}, Z_{\mathrm{h}} \in D_{\mathrm{h}}$, one derives from (2.27) and (2.28)

$$
\mathcal{L}_{Z_{\mathrm{s}}} \varphi_{\mathrm{h}}=Y^{\mathrm{b}}\left(Z_{\mathrm{s}}\right) \varphi_{\mathrm{h}}, \quad \mathcal{L}_{Z_{\mathrm{h}}} \varphi_{\mathrm{s}}=0
$$

which, following a known definition, shows that φ_{h} is a conformal integral invariant of D_{s} and φ_{s} is an integral invariant of D_{h}.

Therefore, by Frobenius' theorem, one may affirm that the manifold M under consideration is foliated by surfaces M_{s} and M_{h} tangent to D_{s} and D_{h}, respectively. One also finds that on M_{h} (resp. M_{s}), one has

$$
\left\langle\nabla h_{2}, \nabla h_{2}\right\rangle=0, \quad\left\langle\nabla h_{3}, \nabla h_{3}\right\rangle=0, \quad\left\langle\nabla h_{1}, \nabla h_{1}\right\rangle=0, \quad\left\langle\nabla h_{4}, \nabla h_{4}\right\rangle=0
$$

and consequently, by referring to [7], one may say that M_{h} and M_{s} are totally pseudo-isotropic surfaces of M. Moreover, the spatial surface M_{s} is totally geodesic, i.e.

$$
\left\langle\mathrm{d} p_{\mathrm{s}}, \nabla h_{1}\right\rangle=0, \quad\left\langle\mathrm{~d} p_{\mathrm{s}}, \nabla h_{4}\right\rangle=0
$$

where $\mathrm{d} p_{\mathrm{s}}$ is the soldering form of the surface M_{s}.
Summarizing, we state the following.
Theorem 1. Let M be a general space-time carrying a totally hyperbolic SSK vector field X and let Y be its spatial generative. Then any such manifold M is the local Riemannian product

$$
M=M_{\mathrm{h}} \times M_{\mathrm{s}}
$$

where M_{h} is a hyperbolic surface and M_{s} a spatial surface, which are such that the immersions

$$
x_{\mathrm{h}}: M_{\mathrm{h}} \rightarrow M, \quad x_{\mathrm{s}}: M_{\mathrm{s}} \rightarrow M
$$

are totally pseudo-isotropic and $x_{\mathrm{s}}: M_{\mathrm{s}} \rightarrow M$ is totally geodesic.
In addition

1. any such M is a space-time of type D in Petrov's classification;
2. the square $\|X\|^{2}$ and $\|Y\|^{2}$ of X and Y are isoparametric functions;
3. Y defines an infinitesimal conformal transformation of X;
4. X is a quasi-exterior concurrent vector field;
5. the curvature tensor field R satisfies

$$
R(X, Y) X=\frac{1}{2}\|Y\|^{4}\|X\|^{2}
$$

3. Second order properties

In this section, some second order properties are discussed and the congruence of Debever $\Gamma\left(h_{4}\right)$ is studied. Regarding the second order properties involving the forms Z^{α} which defines the complex \mathbb{C}^{3}-basis, a series of properties also appear. In terms of CVF, the transcription of the second of Cartan's structure equations (see (1.7)) regarding the curvature forms Σ_{α} are

$$
\begin{equation*}
\mathrm{d} \sigma_{1}=\Sigma_{1}+\frac{1}{2} \sigma_{3} \wedge \sigma_{1}, \quad \mathrm{~d} \sigma_{2}=\Sigma_{2}+\frac{1}{2} \sigma_{2} \wedge \sigma_{3}, \quad \mathrm{~d} \sigma_{3}=\Sigma_{3}+\frac{1}{2} \sigma_{2} \wedge \sigma_{1} \tag{3.1}
\end{equation*}
$$

Hence, in the case under discussion, one infers by a standard calculation by (1.5), (2.11) and (2.13)

$$
\begin{align*}
& \mathrm{d} \sigma_{1}=Y^{2}\left(\sigma_{3}-2 Y^{3} \theta^{2}+2 Y^{b}\right) \wedge \theta^{1}, \quad \mathrm{~d} \sigma_{2}=Y^{3}\left(\sigma_{3}+2 Y^{2} \theta^{3}-2 Y^{\mathrm{b}}\right) \wedge \theta^{4} \\
& \mathrm{~d} \sigma_{3}=-4\|Y\|^{2} \theta^{2} \wedge \theta^{3} \tag{3.2}
\end{align*}
$$

and consequently Eq. (3.1) moves to

$$
\begin{align*}
& \Sigma_{1}=-2 Y^{2}\left(Y^{3} \theta^{2}-Y^{b}\right) \wedge \theta^{1}, \quad \Sigma_{2}=2 Y^{3}\left(Y^{2} \theta^{3}-Y^{b}\right) \wedge \theta^{4} \\
& \Sigma_{3}=\theta^{2} \wedge \theta^{3}-\theta^{1} \wedge \theta^{4} \tag{3.3}
\end{align*}
$$

In terms of the basis $\left\{Z^{\alpha}, \bar{Z}^{\alpha}\right\}$ of \mathbb{C}^{3}, one may write (see also [4])

$$
\begin{array}{lll}
Z^{1}=\theta^{3} \wedge \theta^{4}, & Z^{2}=\theta^{1} \wedge \theta^{2}, & Z^{3}=\frac{1}{2}\left(\theta^{1} \wedge \theta^{4}-\theta^{2} \wedge \theta^{3}\right), \\
\bar{Z}^{1}=\theta^{2} \wedge \theta^{4}, & \bar{Z}^{2}=\theta^{1} \wedge \theta^{3}, & \bar{Z}^{3}=\frac{1}{2}\left(\theta^{1} \wedge \theta^{4}+\theta^{2} \wedge \theta^{3}\right) \tag{3.4}
\end{array}
$$

and Eq. (3.3) turns out to

$$
\begin{align*}
& \Sigma_{1}=-2\|Y\|^{2} Z^{2}+2\left(Y^{2}\right)^{2} \bar{Z}^{2}, \quad \Sigma_{2}=-2\|Y\|^{2} Z^{1}+2\left(Y^{3}\right)^{2} \bar{Z}^{1} \\
& \Sigma_{3}=-2 Z^{3} \tag{3.5}
\end{align*}
$$

We recall that the null vector field h_{4}, which is called Debever's vector field [4], plays a distinguished role in the frame of the CVF. Since by (2.11) one has

$$
\begin{equation*}
\sigma_{14}=0, \quad \sigma_{13}=0 \Leftrightarrow \sigma_{1} \wedge Z^{2}=0 \tag{3.6}
\end{equation*}
$$

then by [4] the congruence $\Gamma\left(h_{4}\right)$ is said to be geodesic and shear 1-free. On the other hand, with respect to the basis $\left\{Z^{\alpha}, \bar{Z}^{\alpha}\right\}$ of \mathbb{C}^{3}, the curvature 2-forms may be expressed by (1.8) (see [1]). By (3.5) one finds

$$
\begin{equation*}
\Sigma_{1}=\left(C_{12}-\frac{1}{2} K\right) Z^{2}+E_{12} \bar{Z}^{2} \tag{3.7}
\end{equation*}
$$

and since one gets

$$
\begin{equation*}
C_{12}=\bar{\sigma}_{12} \tag{3.8}
\end{equation*}
$$

then in terms of the CVF, the above equation proves that the congruence of Debever $\Gamma\left(h_{4}\right)$ is of electric type [4]. We mention that we have

$$
C_{\alpha \beta}=\left(\begin{array}{ccc}
0 & C_{12} & 0 \tag{3.9}\\
C_{12} & 0 & 0 \\
0 & 0 & 4 C_{12}
\end{array}\right)
$$

and this agrees with the fact that the manifold under consideration is of type D in the sense of Petrov [1,4].

Perform now the differentials of the 2-forms $\left\{Z^{\alpha}, \bar{Z}^{\alpha}\right\}$, which define the complex \mathbb{C}^{3}-basis. Then, by (1.5), (2.11) and (2.13) and taking account of (2.6), one infers

$$
\begin{array}{lll}
\mathrm{d} Z^{1}=\frac{1}{2} \bar{\sigma}_{3} \wedge Z^{1}, & \mathrm{~d} Z^{2}=\frac{1}{2} \bar{\sigma}_{3} \wedge Z^{2}, & \mathrm{~d} Z^{3}=2 Y^{\mathrm{b}} \wedge Z^{3}, \\
\mathrm{~d} \bar{Z}^{1}=\frac{1}{2} \sigma_{3} \wedge \bar{Z}^{1}, & \mathrm{~d} \bar{Z}^{2}=\frac{1}{2} \sigma_{3} \wedge \bar{Z}^{2}, & \mathrm{~d} \bar{Z}^{3}=2 Y^{\mathrm{b}} \wedge \bar{Z}^{3} . \tag{3.10}
\end{array}
$$

Therefore, from the above, one may affirm that the space-time under consideration is endowed with an exterior recurrent complex basis. Associated with the \mathbb{C}^{3}-basis, one may consider the almost symplectic forms

$$
\begin{equation*}
\Omega_{i}=\lambda_{i}\left(\bar{Z}^{3}+Z^{3}\right)+C_{i}\left(\bar{Z}^{3}-Z^{3}\right) \tag{3.11}
\end{equation*}
$$

$\lambda_{i} \in C^{\infty} M, C_{i}=$ constant, $i=1,2$. By (1.6), (2.11) and (2.13), one finds that the necessary and sufficient condition in order that the pairing Ω_{i} be symplectic forms, i.e. $\mathrm{d} \Omega_{i}=0$, is expressed by the conditions

$$
\begin{equation*}
\mathrm{d} \lambda_{i}+2 \lambda_{i} Y^{\mathrm{b}}=0 \tag{3.12}
\end{equation*}
$$

Next, by referring to [3], we agree to say that (Ω_{1}, Ω_{2}) defines a nearly symplectic couple if $\Omega_{1} \wedge \Omega_{2}=0$. Hence, the scalars λ_{i} and the constants C_{i} are related by

$$
\begin{equation*}
\lambda_{1} C_{2}+\lambda_{2} C_{1}=0 \tag{3.13}
\end{equation*}
$$

In consequence of (2.8), one may write

$$
Y^{\mathrm{b}}=\frac{\mathrm{d}\|X\|^{2}}{\|X\|^{2}}
$$

and since ${ }^{\mathrm{b}} Y=Y^{2} \theta^{2}-Y^{3} \theta^{3}$ defines the symplectic isomorphism to Y, one derives by (1.6) and (2.13)

$$
\mathrm{d}^{\mathrm{b}} Y=\mathcal{L}_{Y} \Omega_{i}=0
$$

This affirms that the symplectic forms Ω_{i} are invariant by the generative vector field Y of X.

Thus, we may state the following.

Theorem 2. Any space-time (M, g) which carries a total hyperbolic SSK vector field X having a spatial vector field Y as generative is structured by an exterior recurrent complex \mathbb{C}^{3}-basis.

The congruence of Debever $\Gamma\left(h_{4}\right)$ associated with M is of electric type.
Further, let $\Omega_{i}(i=1,2)$ be the almost symplectic forms associated with the \mathbb{C}^{3}-basis and let λ_{i} be the scalars associated with Ω_{i}.

Then the necessary and sufficient condition in order that Ω_{i} be symplectic is that λ_{i} be conformal to $\|X\|^{2}$, and in this case Ω_{i} are invariant by the generative Y and they define a nearly symplectic couple in the sense of [3].

For further reading see [2,5,9,10].

References

[1] M. Cahen, R. Debever, L. Defrise, A complex vectorial formalism in general relativity, J. Math. Mech. 16 (1967) 749-785.
[2] E. Cartan, Systemes Différentiels Extérieurs et Leurs Applications Géométriques, Hermann, Paris, 1945.
[3] H. Geiges, Symplectic couples on 4-manifolds, Duke Math. J. 85 (1996) 701-711.
[4] W. Israel, Differential Forms in General Relativity, Dublin Inst. Advanced Studies, 1970.
[5] I. Mihai, R. Rosca, L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, Vol. 2, PADGE, KU Leuven, KU Brussel, 1996.
[6] M. Petrovic, R. Rosca, L. Verstraelen, Exterior concurrent vector fields on a Riemannian manifold, Soochow J. Math. 15 (1989) 179-187.
[7] R. Rosca, Les variétés pseudo-isotropes dans un espace-temps de Minkowski, C.R. Acad. Sci. Paris 270 (1970) 1071-1073.
[8] R. Rosca, On exterior concurrent skew-symmetric Killing vector fields, Rend. Sem. Mat. Messina 2 (1993) 131-145.
[9] G. Vrănceanu, R. Rosca, Introduction in Relativity and Pseudo-Riemannian Geometry, Edit. Acad. Române, Bucharest, 1976.
[10] A. West, Isoparametric systems, in: Geometry and Topology of Submanifolds, World Scientific, River Edge, 1989, pp. 222-230.
[11] K. Yano, B.Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep. 23 (1971) 343-350.

[^0]: * Corresponding author.

